aaaaaaa

Winols Egr block/delete/disable by software

In the following tutorial you can learn how to find EGR in your EDC15 file and block it by software. Most of ECU’s will throw an error if you block it physically.

Learn how to BLOCK EGR in EDC15 ECU

EGR is only an ecological system but ECU parameters were designed with EGR ON, that’s why is recommended to cancel it via software with no future errors.

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline and diesel engines. EGR works by recirculating a portion of an engine’s exhaust gas back to the engine cylinders. In a gasoline engine, this inert exhaust displaces the amount of combustible matter in the cylinder. In a diesel engine, the exhaust gas replaces some of the excess oxygen in the pre-combustion mixture. Because NOx forms primarily when a mixture of nitrogen and oxygen is subjected to high temperature, the lower combustion chamber temperatures caused by EGR reduces the amount of NOx the combustion generates (though at some loss of engine efficiency). Gasses re-introduced from EGR systems will also contain near equilibrium concentrations of NOx and CO; the small fraction initially within the combustion chamber inhibits the total net production of these and other pollutants when sampled on a time average. Most modern engines now require exhaust gas recirculation to meet emissions standards.

In modern diesel engines, the EGR gas is cooled with a heat exchanger to allow the introduction of a greater mass of recirculated gas. Unlike SI engines, diesels are not limited by the need for a contiguous flamefront; furthermore, since diesels always operate with excess air, they benefit from EGR rates as high as 50% (at idle, when there is otherwise a large excess of air) in controlling NOx emissions.

 Exhaust recirculated back into the cylinder can increase engine wear as carbon particulate wash past the rings and into the oil.

Since diesel engines are unthrottled, EGR does not lower throttling losses in the way that it does for SI engines. Exhaust gas—largely carbon dioxide and water vapor—has a higher specific heat than air, so it still serves to lower peak combustion temperatures. However, adding EGR to a diesel reduces the specific heat ratio of the combustion gases in the power stroke.This reduces the amount of power that can be extracted by the piston. EGR also tends to reduce the amount of fuel burned in the power stroke. This is evident by the increase in particulate emissions that corresponds to an increase in EGR.

By feeding the lower oxygen exhaust gas into the intake, diesel EGR systems lower combustion temperature, reducing emissions of NOx. This makes combustion less efficient, compromising economy and power. The normally “dry” intake system of a diesel engine is now subject to fouling from soot, unburned fuel and oil in the EGR bleed, which has little effect on airflow, however, when combined with oil vapor from a PCV system, can cause buildup of sticky tar in the intake manifold and valves. It can also cause problems with components such as swirl flaps, where fitted. Diesel EGR also increases soot production, though this was masked in the US by the simultaneous introduction of diesel particulate filters. EGR systems can also add abrasive contaminants and increase engine oil acidity, which in turn can reduce engine longevity.

Though engine manufacturers have refused to release details of the effect of EGR on fuel economy, the EPA regulations of 2002 that led to the introduction of cooled EGR were associated with a 3% drop in engine efficiency, bucking a trend of a .5% a year increase.

Take our remap service